
An X.500 and LDAP Database: Design and Implementation

Timothy A Howes <tim@umich.edu>

Abstract

This paper describes the design and implementation
of xldbm, an X.500 and stand-alone LDAP backend
database. The xldbm database supports efficient
execution of all queries, data modifications, and search
pruning using centroids, all using simple underlying
technology freely available on the Internet. Our
approach to resolving various kinds of queries is
described, along with a performance evaluation and
comparison to other popular database packages.

1 Introduction

X.500 [1] and LDAP [2,3] define similar directory
service information and query models. The information
model is centered around entries, which are composed
of attributes. The entries are organized into a tree
structure, usually corresponding to a geographical and
organizational distribution. The query models allow
searching of portions of the tree based on filter criteria
involving attributes (e.g., entries with a surname of
“Jensen”), and returning requested attributes from each
matching entry. The model also defines operations for
adding, removing, or changing entries in the directory.

The X.500/LDAP model poses some interesting
challenges in database design. Searches have broad
scope, spanning from one entry to the entire tree,
making efficient index construction difficult. Several
types of primitive searches are involved, including
equality, substring, and approximate matching, and
range queries. Arbitrary boolean combinations of
search filters must be supported, requiring query
optimization for efficient processing. Searches can
span multipe servers, following aliases or not. Data
can be arbitrarily distributed among servers by means
of knowledge references. Efficient alias and knowledge
handling during a search are key to good distributed
performance.

We imposed an additional constraint on the
underlying technology in our system. It had to be
simple and freely-available Internet software. We did
not want to require a commercial DBMS package, and
we wanted the system to be understandable by users
without much effort. Also, our goal was to make
installation and administration of the system as
straightforward as possible.

The database we have designed and implemented is
based on any of several freely available hash or btree
packages, such as GNU dbm [4], or the Berkeley db
package [5]. It handles all types of X.500/LDAP

searches efficiently, including full substring searches,
several kinds of approximate searches, and, with an
underlying ordered database (such as a btree), range
queries. The database is fully disk-based and makes use
of caching and threading for good performance and
highly concurrent operation. It supports site-specific
index configuration and performance tailoring, and
centroids indexing for distributed search space pruning.

The remainder of this paper gives an overview of
the X.500/LDAP information and query models driving
our database design, followed by an overview of our
approach to the problem. Section 4 gives details on
how we handle specific types of queries. Section 5
describes our handling of aliases and knowledge
references, while section 6 discusses how we use
centroids to provide efficient multi-server searches.
Section 7 shows how modifications affect the database
structure, and Section 8 reports some performance
measurements and summaries various optimizations
we have implemented to improve performance.
Finally, Section 9 discusses limitations of our current
design, and what might be done to eliminate them.

2 Overview of X.500 and LDAP

X.500 is the OSI directory service. It defines an
information model, determining the form and character
of information in the directory; a namespace, allowing
the information to be referred to and organized; and a
functional model, determining what operations can be
performed on the information.

The information model is centered around entries,
which are composed of attributes. Each attribute has a
type and one or more values. The type determines the
attribute’s syntax, which defines what kind of
information is allowed in the values. Entries are
arranged in a tree structure and divided among servers
by means of knowledge references in a geographical
and organizational distribution. Entries are named
according to their position in this hierarchy. Alias
entries are allowed, which point to other entries,
circumventing the hierarchy. Figure 1 depicts the
relationship between entries, attributes, and values and
shows how entries are arranged into a tree.

2

Attr, Attr, ...

Alias
entry

Object
entry

Figure 1: The X.500 model is centered
around entries which arecomposed of

attributes. Entries are arranged into a tree
structure. Alias entries can circumvent the

hierarchy.

Functionally, X.500 defines operations for
searching, reading, and writing directory information.
The search operation can span a single entry, an entry’s
children, or an entire subtree of the directory. Alias
entries can be followed automatically during a search,
even if they cross server boundaries. There are also
operations to read a single entry or list the children of
an entry. Operations are provided to add entries, delete
entries, and modify existing entries.

LDAP, the lightweight directory access protocol,
was originally developed as a front-end to the X.500
directory. Naturally, it assumes the same information
model and namespace as X.500. LDAP is lightweight
for three main reasons. First, the functional model is
less complicated. The read and list operations are left
out; they are emulated using search. Some of the more
esoteric and less-often-used features of other operations
are also not included.

Second, LDAP runs directly over TCP or other
reliable transport. It avoids the overhead of the OSI
session and presentation layers, making connection
setup and packet handling faster and simpler.

Third, LDAP uses simple string representations for
most syntaxes. While X.500 encodes data elements as
highly structured ASN.1 elements, the LDAP approach
encodes them as simple strings. This is a big
performance win in encoding/decoding speed and
complexity.

We have made minor extensions to LDAP so that
it can be used as a stand-alone directory service, not
just a frontend to X.500. The modifications involve
the addition of referrals to the protocol, and the
development of a backend database supporting the
LDAP information model and query semantics. The
similar X.500 and LDAP information and query
models make database development for both a similar
task. The same database design can be used to backend
both protocols, with only minor modifications (e.g.,

to support the X.500 list and read operations).

3 Approach

Our approach to the X.500/LDAP database design
problem is a simple one. We wanted high performance,
but not at the expense of complicated management,
administration, or recovery procedures. We wanted
reliability, but not the complications introduced by a
two-phase commit , roll-back or other guaranteed-
reliable transaction protocol. We felt the system should
be understandable with little effort, and easy to
manage. In short, our goal was to develop a highly-
functional system with good performance that was easy
to administer and understand, and had reasonable
reliability and recovery capabilities.

We started with the simple two-part index structure,
depicted in Figure 2. First, we assign each entry a
uniqne identifier by which it can be referred to
efficiently. All entries in the database are maintained in
a single index file, keyed by this ID. Entries are stored
in this index using a simple text format of the form
“attribute: value,” as shown in Table 1. Non-ASCII
values, or values that are too long to fit on a
reasonably sized line are represented using a base 64
encoding, making entries in the index human readable
and easy to reconstruct if lost. Given an ID, the
corresponding entry can be returned quickly and
efficiently, for the cost of a single hash table or btree
lookup, depending on the choice of underlying
technology. If other index files are corrupted or
destroyed, they can be regenerated from this one file.

id2entry
id1							entry1
...
idn							entryN

attribute index
value1						id1,...,idn
...
vlaueN						id1,...,idn

Figure 2: Xldbm index structure. The
id2entry index stores entries in text form.

The attribute indexes map values to lists of
entry IDs.

Second, for each indexed attribute, we generate
another file containing a list of IDs of entries
containing each value of the attribute. (See the detailed
discussion on each query type below for an explanation
of what each value actually is.) This index is keyed by
value, making the retrieval of a list of IDs of entries
containing a given value efficient. These indexes are
not text-based, nor are they meant to be read or
manipulated by users (except via a low-level database
administration program we provide, or indirectly
through an X.500 or LDAP query). Vaues are
normalized before they are added to an index (e.g.,
caseIgnoreString values are case-normalized,

3

telephoneNumberSyntax values have spaces and dashes
removed). The original values are retained in the
id2entry index and will be returned in a search.
Additional indexes of this type are constructed for
Distinguished Names, aliases and knowledge
references. These specialized indexes are discussed in
detail later.

Table 1: Text entry representation in the
id2entry index. The first line contains the

entry ID. The second line contains the
Distinguished Name. Subsequent lines

contain attributes.

12345
dn: cn=Babs Jensen, o=Babsco, c=US
cn: Babs Jensen
cn: Barbara J Jensen
sn: Jensen
. . .

Given this index structure, answering a simple
query is straightforward: look up the requested value in
the appropriate attribute index, returning a list of entry
IDs; look up those entry IDs in the id2entry index,
returning the resulting entries to the user. For reasons
discussed below, the entries read from the index files
may be candidate entries, that is, there is no guarantee
that they actualy match the query. Therefore each entry
has the filter applied to it directly before it is returned
as a match. This also provides an opportunity to apply
access control, size and time limits, etc.

Using this simple index structure, we are able to
answer virtually any X.500/LDAP query efficiently.
The requirements on the underlying database are
minimal: index entries are read and written; entry IDs
are inserted in and deleted from index entries. Only
during range queries and, optionally, some forms of
approximate matching is some ordering on the indexes
required, implying the btree, rather than hash file,
backend.

4 Specific Query Types

This section discusses xldbm’s index use in detail
for various types of queries. For all queries, the general
approach is to consult one or more index files to
generate a list of entries. Depending on the query type,
these entries may have the filter applied to them
directly to ensure a match. Individual search primitives
are described first, followed by boolean combinations
of queries.

4 . 1 Simple Equality

An equality search tests for entries that have a
given value for a certain attribute. For example, a
commonName of “Babs Jensen.” Satisfying such a
query using the xldbm index structure is

straightforward: the commonName index is consulted
for the list of entries corresponding to the value “Babs
Jensen.” Next, this list of entries is read from the
id2entry index. The entries returned are guaranteed to
match the filter.

4 . 2 Approximate Matching

There are several approaches to approximate
matching. Phonetic algorithms such as soundex and
metaphone [] are popular, and there is ongoing research
into spelling or other error-correcting algorithms such
as the one used by glimpse []. Currently, we support
both soundex and metaphone, and have plans to
support glimpse. For both phonetic algorithms we
chose an approach that makes few assumptions about
the structure of the data (e.g., it does not assume name
data and attempt to extract a surname for matching
purposes). This makes our algorithm appropriate for a
wide variety of data, and reduces the risk and
complexity involved in assuming a semantic structure.
The disadvantage is that we are unable to take
advantage of any knowledge about the type of data to
improve performance.

We treat the value being matched as a sequence of
words. When building the index, a phonetic code is
generated for each word in the value. The code is then
stored in the index, mapping to the ID of the entry
containing the original value. The value given in an
approximate matching query is similarly broken into
words and then codes, each of which is looked up in
the index.

An entry is considered to match the query if it has a
value containing words corresponding to all the given
codes in the proper order. If the query contains multiple
words, the lists of associated IDs are intersected to
produce the final list. The words must appear in the
same order in the value. Since ordering information is
lost in the index, the filter must be applied directly to
each candidate entry to determine if it really matches
the query. Table 2 shows some example approximate
matching queries and values to match against
(including the corresponding phonetic codes generated
by the metaphone algorithm), and a brief explanation
of why the value does or does not match the query.

4

Table 2: Example approximate matches

 Query (codes) Value (codes) Match?

Babs Jensen
(BBS JNSN)

Babs Johnson
(BBS JNSN)

Yes - match

Babs Jensen
(BBS JNSN)

Jensen Babs
(JNSN BBS)

No - match, but
wrong order

Jensen
(JNSN)

Smith
(SMO)

No - codes do
not match

Bob Smith
(BB SMO)

Bob A Smith
(BB A SMO)

Yes - match

Bob A Smith
(BB A SMO)

Bob Smith
(BB SMO)

No - code for A
is missing

There are several options for code generation and
matching in the index. The simplest is to generate
fixed-length codes of some maximum length. This
makes generation and lookup simple. If the code length
is too short, it can lead to unexpected matches because
of code truncation (e.g., “Babs” matching
“Babsikowjskvik” - both produce a code with BBS as
the first three characters). If the code length is too
long, it can lead to missed matches that should be
returned (e.g., “Howe” not matching “Howes”). These
two problems are in conflict.

The solution is to adopt a configurable “prefix”
matching scheme in which a code is considered a match
if it contains the key code as a prefix. This solves the
missed match probolem, but can still lead to
unexpected matches as described above. To combat this
problem, we add the constraint that the two codes must
differ in length by at most N characters, where N is an
administrator-defined constant. Setting N to zero
results in strict code matching. Setting N to a large
number results in strict prefix matching (e.g., “Babs”
(BBS) will match “Babsik” (BBSK) and
“Babsikowjskvik” (BBSKJSKFK)). Setting N
somewhere in between results in more reasonable
behavior (e.g., “Babs” matches “Babsik”, but not
“Babsikowjskvik”). We have found two to be a pretty
good number for N.

To support this variable prefix matching requires
the underlying database to support prefix retrieval of
codes. With a btree or other ordered method, this is
straightforward. With a hash-based scheme, it is more
difficult. For small values of N and a restricted
phonetic code alphabet (e.g., in the soundex scheme),
it is feasible to generate all possible codes of greater
length (up to N) and look them up. This method
clearly does not scale well, and our implementation
only implements variable prefix matching with an
ordered underlying database.

4 . 3 Substring Matching

The substring matching problem is one of the most

interesting and challenging posed by X.500/LDAP.
Both models support arbitrary substring matching on
text attributes. A query may specify a leading
substring, trailing substring, arbitrary internal
substring, or any combination of these to be matched.
We set out to design a scheme that was fast, efficient
and flexible. A glimpselike approach, though efficient
in terms of index space used, was not fast enough and
difficult to update incrementally (e.g., in response to
modifications). Other approaches involving fast pattern
matching on values suffer from order N performance
where N is the size of the data being searched.

Our solution is to generate all substring
components of a fixed length for each value and index
those. Additional anchors are added to each value,
marking the beginning and end of the string. When a
query is presented, similar substring components are
generated corresponding to it. These components are
looked up in the index and the resulting lists of entry
IDs are intersected to form the list of candidate entries.
These candidates then have the query applied to them
directly, to ensure they match the query. This last step
is necessary since, as for approximate matching, the
ordering of substrings is not retained in the index.
Figure 3 illustrates this process for the value “Babs.”

BABS ^BABS$Babs

^BA
BAB
ABS
BS$

Substring
Attribute

Index

Figure 3: Substring index generation for
components of length three. The value is

normalized and leading and trailing anchors
are added. Then all possible substrings of

length three are generated and stored in the
corresponding attribute index.

Our experience shows that a component length of
three is optimal for databases of around 100,000
entries. The optimal length depends on the size of the
data being indexed, the type of data, and a time-space
trade-off in query performance versus index size.
Longer components result in each substring mapping
to fewer entries, but the number of distinct
components increases. Shorter components reduce this
number, but increases the number of entries to which
each component maps. The two extreme cases provide
some insight: A component length of one means that
each letter is a component. For many types of data,
this means that close to every entry will be listed for
each component, making the list of candidate entries
long. A very long component length degenerates into
the equality index case, and no advantage is gained.

5

Note also that the component length sets a lower
bound on the length of substring queries that can be
supported (e.g., with a component length of three, a
query for *A* cannot be answered).

In practice, this scheme works surprisingly well.
For most data sets and query types, we have found they
tend to contain some “power components” that help to
reduce the list of candidates quickly. Pathological cases
exist in which most entries are listed for each
component. In such cases the “power” aspect may be
contained in the component ordering, rather than the
components themselves, in which case the algorithm
reduces to a substring search of the entire space, as
candidates are eliminated. We have found such cases to
be rare in practice.

4 . 4 Ranges

For attributes supporting some kind of ordering,
the X.500/LDAP models support inequality queries for
entries containing values greater-than-or-equal-to or
less-than-or-equal-to a given value. Although often the
case in practice, there is no requirement that these two
operators be used together to form a bounded range
query. With an underlying database supporting ordered
retrieval, responding to such queries is easy. With a
hash-based scheme, it presents a problem we have not
yet solved, except in some specific cases.

With ordered retrieval, a greater-than-or-equal-to
query is answered by retrieving the given value (or
“smallest” value greater than it), and then stepping
through subsequent values in the ordering. The
resulting lists of entry IDs are unioned together to
form a single list of candidates. These candidates are
guaranteed to match the filter, so there is no need to
apply the filter directly to them. A less-than-or-equal-to
query is handled similarly. The first item in the
ordering is retrieved, followed by subsequent items
until an item greater than or equal to the given key is
reached. The resulting entry IDs are unioned to form
the result. If the query involves range of values (i.e.,
greater than one vaue and less than another), obvious
optimizations can be made. The efficiency of this
method is proportional to the number of keys in the
range.

With a hash-based scheme, ordered retrieval is not
possible. In some cases, where the ordering can be
approximated by a substring search, a hash-based
approach can still provide results. For example, an
attribute containing UTC time values has this
property. A query requesting entries with a time greater
than or equal to 1994 and less than or equal to 1995
produces the same results as a substring query for a
time with a leading substring of “1994” (plus the
simple case of a time equal to 1994). This works
because UTC time has a concrete string representation
that is lexicographically increasing. The situations in

which this approach works are limited.

4 . 5 Boolean Combinations

As with any database, one of the most challenging
problems is the support of arbitrary queries. If the
query set is restricted and can be predicted ahead of
time, design is simplified. In the case of X.500/LDAP
(as with the relational model), there is no limit to the
complexity of queries. The method by which these
queries are built is straightforward, though, making the
task easier. Boolean combinations of queries include
conjunction (AND), disjunction (OR), and negation
(NOT). If X and Y are queries, so are “X AND Y,” “X
OR Y,” and “NOT X.”

Conjunctive queries are easy to handle. A list of
candidates is produced for each conjunction and then
intersected. Note that it is not necessary to evaluate
candidates before the intersection.

Disjunctive queries are similarly straightforward. A
list of candidates is produced for each disjunction and
then unioned. Again, candidates need not be evaluated
before the union takes place.

Negation queries are more difficult. A simple
approach is to produce a list of candidates matching the
query and then subtract it from the list of all
candidates. Unfortunately, since the original list may
be only a list of candidates not guaranteed to match the
query, blindly applying this approach can lead to lost
matches. The solution is to apply the query (before
negation) to the list of candidates before performing the
subtraction. This produces correct results, but can be
expensive.

For example if the query is for entries not
containing an objectClass of person and the database
contains a million entries, only one of which is not a
person, the method degenerates into a linear search. In
this case, it would be more efficient to step through
the values of the objectClass attribute, building
candidates from the ones matching the query. By
building more knowledge into the database (e.g., how
many distinct values are in an index), NOT
performance can be improved.

5 Aliases and Knowledge References

Aliases and knowledge references provide similar
challenges to database design. Both features create
situations where a search must be continued “outside”
of the original search scope, perhaps even outside the
original server handling the query. Of the two, aliases
are more problematic because they can point anywhere,
there is no consistency requirement, and they are user-
creatable.

A search that does not have the searchAliases flag
set in X.500 or the alias flag set to derefAlways or

6

derefSearching in LDAP is not affected by aliases. If
one of these flags is set, indicating that aliases
themselves should not be searched, but rather what
they point to, a new phase is added to the search
procedure.

The key to handling aliases is to identify those
aliases that point outside the scope of the search. If an
alias does not “escape” the scope of the search, the
entry it points to will be searched automatically
(because it is contained within the scope, not because
an alias points to it - why it gets searched is
immaterial, as long as it does). Once such aliases are
identified, the search is continued with the entries to
which they point (either the entry itself for a one-level
search, or the entry and all its descendents for a subtree
search). Base object searches are easy to handle by
examining the entry directly, and do not require any
special indexing.

To efficiently identify aliases that need searching,
two new indexes are maintained, one for one-level
scopes, one for subtree scopes. For each non-leaf entry,
the one-level index contains an entry containing the
entry IDs of alias children of the entry that do not
point to other children (i.e., aliases that escape the one-
level scope). Similarly, the subtree index contains
entry IDs of alias descendents of the entry that do not
point to other descendents. During a search, the list of
candidate entries is generated as before, and then the
appropriate alias-scope index is consulted to determine
if there are entries outside the scope that should be
searched. Figure 4 illustrates this process for a sampe
tree.

1 2

3
4

5

One-level alias index
1																	3

Subtree alias index
1																	3

Figure 4: Alias scope index. A subtree or
one-level search starting at entry 1
consultss the appropriate index and

determines it needs to continue the search
with the entry pointed to by entry 3.

Knowledge references are handled via a similar
approach. Indexes are constructed for one-level and
subtree knowledge references. Given a search scope and
the entry ID of the base object, the list of knowledge
references within that scope can be quickly retrieved. In
X.500, these knowledge references are either used to
chain the search or returned as continuation references

to the client. In LDAP, knowledge references are
returned as referrals (more on knowledge references and
their relationship to centroids in Section 6). Figure 5
depicts the structure of the knowledge reference index.

2

One-level KR index
1																	2

Subtree KR index
1																	2

1

Figure 5: Knowledge reference scope index.
A search beginning at entry 1 is continued
at the server identified by the knowledge

reference contained in entry 2.

Maintenance of the alias and knowledge reference
indexes is non-trivial but straightforward. When a new
alias entry is added to the tree, the one-level alias entry
for its parent may need updating (if the alias does not
point to a sibling entry). The subtree alias entry for
each ancestor may also need updating. For knowledge
references, the same is true.

This approach allows the efficient identification of
alias and knowledge references at which a search must
be continued. Aliases can be particularly troublesome
from a performance standpoint. If many aliases escape
the scope of a search, each one must be searched
individually, causing a significant performance penalty.
It’s hard to see a general solution to this problem that
guarantees good performance, and we feel this is a
design deficiency in the X.500 and LDAP models.

6 Centroids

A weakness of the X.500/LDAP model is its lack
of support for wide-area searches. The hierarchical
scheme works well for searches whose scope can be
restricted using the namespace. For searches that do not
have this property, the model degenerates to a search of
the entire tree, contacting every server. Clearly, this
approach does not scale well.

Several solutions have been proposed, including
alternate hierarchies; special “yellow pages” portions of
the tree where attributes are organized to facilitate
alternate searching; “alias” trees that collect pointers to
information in other servers; and out-of-band
distributed indexing to help prune the search space. All
these schemes have their advantages, but we chose the
latter approach for our system. It averts many of the
maintenance and consistency probems of using aliases,
and does not require the global cooperation necessary to

7

implement an alternate namespace. It also has the
advantage of presenting a consistent model to clients;
they see the same tree as always, searches just happen
more efficiently.

We chose to use centroids as our distributed
indexing framework. Adapted from work by Salten [],
and originally proposed for use on the Internet in the
WHOIS++ system, centroids have the potential to
provide efficient wide-area searching in the
X.500/LDAP model. We have adapted centroids to this
model, and included a few extensions that allow us to
support the more flexible query language defined by
X.500 and LDAP.

The basic centroid model involves generating the
list of distinct words in a database. This list is called a
centroid of the database. If centroids are generated for
many such databases and given to another server, the
server can consult the list of centroids to determine
which low-level databases might hold the answer to a
query. An trivial example is shown in Figure 6.

Babs Jensen
Babs Johnson
Bjorn Jensen

Babs Jensen
Lars Johnson

Babs
Jensen
Johnson
Bjorn
Lars

server A server B

A,B

server C

A,B
A,B
A
B

Figure 6: Centroid example. A centroid is a
list of distinct words in a database. A server
that collects centroids from other servers is
able to determine which servers are likely to

be able to answer a given query. A search
involving the word “Bjorn” can be directed

only to server A.

We modified the centroid model to include whole
values, rather than words. Simiar modifications were
made by the desighers of SOLO [], who use centroids
for navigation and searching. The use of values in the
centroid enables a broader range of searches to be
supported (e.g., substrings), and fewer “false positives”
to be returned. There is a trade-off, of course. The
centroids produced are larger, not having as attractive
collapsing properties as their word-oriented
counterparts. Table 3 provides a comparison between
the word and value approaches to centroid generation.

Tablle 3: Word versus value centroid
comparison. Word-based centroids tend to be

smaller, but value-based centroids allow
more accurate and flexible query resolution.

In this example, the word centroid is
smaller by one “Babs” and one “Jensen,” but
gives a false positive match for a query for

“Bjorn Johnson.”

 Values Word centroid Value centroid

Babs Jensen
Babs Johnson
Babs Jensen
Bjorn Jensen

Babs
Jensen
Johnson
Bjorn

Babs Jensen
Babs Johnson
Bjorn Jensen

Incorporating centroids into the X.500/LDAP
model is not difficult conceptually. A search is
initiated at some point in the hierarchy. Normally, a
server would search its own data and chain or refer the
search to all servers holding data below it in the tree. If
a server holds centroids for these servers, it can consult
them and only chain or refer the search to those servers
possibly able to satisfy the query. Figure 7 illustrates
this process.

f i x

Figure 7: Search-space pruning using
centroids. A server holding centroid data for
servers below it in the tree only chains or
refers the search to those servers possibly

able to answer the query.

In our database design, we introduce the concept of
a centroid entry. Conceptually, the entry holds an
entire centroid, along with access information for the
server that generated the centroid. (In our
implementation, this information is contained inthe
name of the centroid entry.) The values in the entry are
added to the indexes just like normal values. During a
search, the indexes are consulted as usual, returning the
ID of the centroid entry. Here the handling of centroid
entries differs from regular entries. Instead of returning
the entry to the client, the search is continued using
the access information in the centroid entry, or the
access information is returned to the client so it may
continue the search.

This implementation of centroids has several
advantages. First, it was very easy to implement. Once
we developed the index structure described in the
previous sections, it took literally less than a dozen
lines of code to support centroids. Second, the pruning
happens through the normal indexing consultation
process. Third, the centroid generation and addition
process is done using normal DAP or LDAP
operations. Centroids are added using the add operation
and deleted using the delete operation. Existing
centroids are modified using the modify operation (e.g.,
in response to incremental changes to the centroid). A
separate process is responsible for using these
operations to generate and apply centroid changes to
and from the database. This makes it easy to add new

8

schemes later, or change the existing scheme.

7 Modifications

Both X.500 and LDAP support adding, deleting and
modifying entries in the directory. They assume that
read requests of the directory are far more frequent than
writes, but modify performance is still an issue. In
both models, every set of modifications must either
succeed or fail as a group. Although we do not provide
a transaction system with roll-back capability, we do
minimize the time during which a serious failure can
occur.

A modification is implemented as a three-step
process. First, an in-memory copy of the entry is
changed. If this fails, or the entry fails to satisfy the
directory schema requirements after the modifications
are applied, the operation is aborted. Second, the
affected indexes are updated. This involves inserting
and deleting entry IDs from index entries. If anything
goes wrong here, the operation is aborted. Third, the
id2entry index containing the entry itself is updated. In
case of a catastrophic failure, this is the only file that
is crucial. The other indexes can be reconstructed from
the id2entry index. So, the only critical section of the
modify is the update of the id2entry index. Since each
entry is represented in the index by a contiguous
sequence of characters, the update of this index can be
done with a single write operation, further reducing the
risk.

In practice, we find this level of reliability adequate,
especially when combined with the ability to do
replication, which we have implemented. A full
discussion of our replication strategy is beyond the
scope of this paper, but changes are logged to a file
which is then read by a separate replication process,
responsible for distributed changes to any number of
replicas.

8 Performance Enhancements

As described, the system works surprisingly well,
especially considering its simplicity. We have made
several enhancements that have significantly increased
performance, especially on modifies. First, our original
design called for a separate index file for each attribute
and index type (i.e., for each attribute files for the
equality index, substring index and approximate index
are created). To reduce the number of indexes open at
one time, we have combined these three files into one.
Doing so required the addition of a prefix scheme for
storing the value keys in order to avoid conflicts.
Equality keys are prefixed by “=“, substring keys are
prefixed by “*”, and approximate keys are prefixed by
“~”. This reduces by a factor of three the number of
open indexes necessary, with little impact on
performance.

Second, our original design called for index entries
as single blocks of entry IDs. In practice, these blocks
become quite large. For example, in our database there
are close to 100,000 people entries, causing the single
objectClass index entry for the value person to be
about 400,000 bytes (100,000 entries * 4 bytes per
entry ID). If an entry is added, this index entry
increases by one entry ID, causing the entire 400K
block to be rewritten. This caused a severe performance
penalty. To combat the problem, we introduced a
scheme in which index entries are broken up into file
system-sized block fragments. Small blocks are stored
as before. Large blocks are accessed with a level of
indirection through a “header” block which points to
the fragments. A slight penalty is paid when the block
is read (several small reads take longer than than one
large one), but the performance increase on a modify is
substantial. Generally, only one fragment needs
updating.

Third, we noticed that some index entries,
particularly in the substring index, were so large that
they contributed little to reducing the number of
candidates. Worse, such blocks contribute to poor
performance, both on reads and writes. To reduce the
effects of such large blocks, we introduced the concept
of an allIDs block. The allIDs block is a simpe stand-
in for a block containing all entry IDs in the database.
It contains a single flag-valued entry ID, making it
very small. The allIDs block acts like the universal set
in index operations. The block size above which a
block is replaced by an allIDs block is configurable.
The optimum size depends on the database size and
content. In practice, we have found a size of between
5,000 and 10,000 entry IDs to work well for our
100K-sized environment. Pathological cases exist in
which this approach leads to a linear search of the
database, but we have found these cases to be rare.

Finally, our biggest performance enhancement
comes from extensive use of caching. The most
expensive part of the search operation is the reading of
candidates from the id2entry index, and the subsequent
application of the filter. We maintain a configurable
in-memory cache of entries, keyed by DN and by entry
ID. Table 4 shows a comparison of some typical
searches, with “cold” and “hot” entry caches. We also
maintain a cache of open index files, and the
underlying hash or btree database keeps a cache of its
own.

Table 4: Effect of caching on performance
for various queries.

 Query Cold cache Hot cache

cn=Babs - -

cn=*Babs* - -

cn~=Babs - -

9

9 Limitations

Our scheme performs well, but it does have
limitations. First, the scheme will not scale to more
than a few hundred thousand to a million entries. The
algorithms are sound, but the use of simple file
system-based hash and btree packages incurs a
performance penalty. Replacing these underlying
systems with a DBMS system would undoubtedly
improve performance and increase the number of
entries the scheme can handle.

Second, we feel modify performance is still
unacceptably poor. The limiting factor here again is
the underlying database package. A file system-based
approach, not optimized for modification, nor for our
application in particular, simply cannot compete with
a commercial DBMS.

Finally, the user-friendy text representation used to
store entries in the id2entry index slows down the
reading of entries. Especially in the X.500 case, there
is significant time spent converting from the text
format to an internal representation. Storing entries in
BER-encoded ASN.1 (the representation used on the
wire) would greatly improve this performance. It would
require developing new BER-aware versions of many
utility routines, including things like strcmp and
friends.

1 0 Summary

This paper describes the design and implementation
of xldbm, a backend database for X.500 and stand-alone
LDAP. The system uses simple freely-available
database technology and provides good performance,
reliability, and recovery. Xldbm handles virtually all
types of X.500/LDAP queries efficiently, including
full substring and approximate matches. Aliases and
knowledge references are handled through clever index
construction. Centroids have been adapted for use as a
search space-pruning device. Several performance
enhancements have been implemented, making the
system perform surprisingly well.

1 1 Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grant No. NCR-
9416667.

References

[1] The Directory: Overview of Concepts, Models and
Service. CCITT Recommendation X.500, 1988.

[2] W. Yeong, T. Howes, S. Kille, Lightweight

Directory Access Protocol. Request For
Comments (RFC) 1777, March, 1995.

[3] T. Howes, S. Kille, W. Yeong, C. Robbins, The
String Representation of Standard Attribute
Syntaxes. RFC 1778, March 1995.

Author Information

Tim Howes is a Senior Systems Research
Programmer for the University of Michigan's
Information Technology Division. He received a
B.S.E. in Aerospace Engineering, a M.S.E. in
Computer Engineering from U-M, and is completing a
Ph.D. in Computer Science. He is currently project
director and principal investigator for the NSF-
sponsored WINX project, and in charge of directory
service development and deployment at U-M. He is the
primary architect and implementor of the U-M LDAP
directory package, the DIXIE system, the GDA X.500
DSA, and a major developer of the QUIPU X.500
implementation. He is author or co-author of several
papers and RFCs, including RFC 1777 and RFC 1778
defining the LDAP protocol. He is chair of the IETF
Access, Searching, and Indexing of Directories working
group, and an active member of the ACM and IEEE.

