An X.500 and LDAP Database: Design and Implementation
Timothy A Howes <tim@umich.edu>

Abstract

This paper describesthe design and implementation
of xldbm, an X.500 and stand-alone LDAP backend
database. The xldbm database supports efficient
execution of all queries, data modifications, and search
pruning using centroids, all using simple underlying
technology freely available on the Internet. Our
approach to resolving various kinds of queries is
described, along with a performance evaluation ad
comparison to other popular database packages.

1 Introduction

X.500 [1] andLDAP [2,3] definesimilar directory
service information and query model$e information
modelis centeredaroundentries, which are composed
of attributes. The entries are organizedinto a tree
structure,usually correspondindgo a geographicaland
organizationaldistribution. The query models allow
searching of portions of thieee basedon filter criteria
involving attributes(e.g., entrieswith a surnameof
“Jensen”),and returningrequestedattributesfrom each
matching entryThe model also definesoperationsfor

adding, removing, or changing entries in the directory.

The X.500/LDAP model posessome interesting
challengesin databasedesign. Searcheshave broad
scope, spanningfrom one entry to the entire tree,
making efficient index constructiondifficult. Several
types of primitive searchesare involved, including
equality, substring, and approximate matching, and
range queries. Arbitrary boolean combinations of
search filters must be supported, requiring query
optimization for efficient processing.Searchescan
spanmultipe servers,following aliasesor not. Data
canbe arbitrarily distributedamongserversby means
of knowledge references. Efficient alias andknowledge
handling during a searchare key to good distributed
performance.

We imposed an additional constraint on the
underlying technologyin our system. It had to be
simple and freely-availablelnternet software. We did
not want torequirea commercialDBMS packageand
we wantedthe systemto be understandabléy users
without much effort. Also, our goal was to make
installation and administration of the system as
straightforward as possible.

The databasee havedesignedandimplementeds
basedon any of severalfreely availablehashor btree
packagessuchas GNU dbm [4], or the Berkeley db
package[5]. It handlesall types of X.500/LDAP

searchefficiently, including full substringsearches,
severalkinds of approximatesearchesand, with an
underlying ordered database(such as a btree), range
queries. The database is fully disk-basad makesuse

of caching and threading for good performanceand
highly concurrentoperation.It supports site-specific
index configuration and performancetailoring, and
centroids indexing for distributed search space pruning.

The remainderof this papergives an overview of
the X.500/LDAP information and query models driving
our databaselesign, followed by an overview of our
approachto the problem. Section4 gives details on
how we handle specific types of queries. Section 5
describesour handling of aliases and knowledge
referenceswhile section 6 discusseshow we use
centroidsto provide efficient multi-server searches.
Section 7 shows hownodificationsaffect the database
structure, and Section 8 reports some performance
measurement&nd summariesvarious optimizations
we have implemented to improve performance.
Finally, Section 9discussedimitations of our current
design, and what might be done to eliminate them.

2 Overview of X.500 and LDAP

X.500 is the OSI directory service.It defines an
information model, determininthe form and character
of information in thedirectory; a namespaceallowing
the informationto be referredto and organized;and a
functional modeldeterminingwhat operationscan be
performed on the information.

The information model is centeredaroundentries,
which are composedf attributes. Eachattributehasa
type andone or morevalues. The type determineghe
attribute’s syntax, which defines what kind of
information is allowed in the values. Entries are
arrangedn a tree structureand divided among servers
by meansof knowledge references in a geographical
and organizational distribution. Entries are named
accordingto their position in this hierarchy. Alias
entries are allowed, which point to other entries,
circumventing the hierarchy. Figure 1 depicts the
relationship between entriesttributes,andvaluesand
shows how entries are arranged into a tree.

Alias
entry

Objec
entry .-~

|Attr, Attr, ... |

Figure 1: The X.500 model is centered
around entries which arecomposed of
attributes. Entries are arranged into a tree
structure. Alias entries can circumvent the
hierarchy.

Functionally, X.500 defines operations for

searchingreading,and writing directory information.

The search operation can span a single entry, an entry’s
children, or an entire subtreeof the directory. Alias
entriescan be followed automaticallyduring a search,
evenif they crossserverboundaries.There are also
operations to read single entry or list the children of

an entry.Operationsare providedto addentries,delete
entries, and modify existing entries.

LDAP, the lightweight directory accessprotocol,
was originally developedas a front-endto the X.500
directory. Naturally, it assumeshe sameinformation
model andhamespacas X.500. LDAP is lightweight
for threemain reasonskFirst, the functional model is
lesscomplicated.The readandlist operationsare left
out; they are emulated using search. Sathe more
esoteric and less-often-used featwésther operations
are also not included.

Second,LDAP runs directly over TCP or other
reliable transport.It avoidsthe overheadof the OSI
sessionand presentationlayers, making connection
setup and packet handling faster and simpler.

Third, LDAP uses simple stringepresentationfor
most syntaxeswWhile X.500 encodedlataelementsas
highly structured ASN.1 elements, the LDAP approach
encodesthem as simple strings. This is a big
performancewin in encoding/decodingspeed and
complexity.

We havemademinor extensiongo LDAP so that
it canbe usedas a stand-alonadirectory service, not
just a frontendto X.500. The modificationsinvolve
the addition of referrals to the protocol, and the
developmentof a backend databasesupporting the
LDAP information model and query semantics.The
similar X.500 and LDAP information and query
modelsmake databaselevelopmenfor both a similar
task. The same database designbe usedto backend
both protocols,with only minor modifications(e.qg.,

to support the X.500 list and read operations).

3 Approach

Our approachto the X.500/LDAP databasedesign
problem is a simple one. We wanted high performance,
but not at the expenseof complicated management,
administration, or recovery procedures.We wanted
reliability, but notthe complicationsintroducedby a
two-phasecommit , roll-back or other guaranteed-
reliable transaction protocol. We felt the system should
be understandablewith little effort, and easy to
manageln short, our goal was to developa highly-
functional system with good performance that was easy
to administer and understand,and had reasonable
reliability and recovery capabilities.

We started with the simple two-part index structure,
depictedin Figure 2. First, we assign eachentry a
unigne identifier by which it can be referred to
efficiently. All entries in the database are maintaiied
a single index file, keyed by thi®. Entriesare stored
in this index using a simple text format of the form
“attribute: value,” as shownin Table 1. Non-ASCII
values, or values that are too long to fit on a
reasonablysizedline are representedising a base64
encoding,making entriesin the index humanreadable
and easyto reconstructif lost. Given an ID, the
correspondingentry can be returned quickly and
efficiently, for the costof a single hashtable or btree
lookup, depending on the choice of underlying
technology. If other index files are corrupted or
destroyed, they can be regenerated from this one file.

id2entry attribute index
id1l—m entryl valuels idl,...,idn

idn—=—entryN viaueNs» id1,...,idn

Figure 2: Xldbm index structure. The
id2entry index stores entries in text form.
The attribute indexes map values to lists of

entry IDs.

Second,for each indexed attribute, we generate
another file containing a list of IDs of entries
containing eachalue of the attribute(Seethe detailed
discussion on each query type below foreaplanation
of what eaclvalue actually is.) Thisindexis keyedby
value, making the retrieval of a list of IDs of entries
containinga given value efficient. Theseindexesare
not text-based,nor are they meant to be read or
manipulatedby users(exceptvia a low-level database
administration program we provide, or indirectly
through an X.500 or LDAP query). Vaues are
normalizedbefore they are addedto an index (e.g.,
caselgnoreString values are case-normalized,

telephoneNumberSyntax values have spaoellashes
removed). The original values are retained in the
id2entry index and will be returned in a search.
Additional indexesof this type are constructedfor
Distinguished Names, aliases and knowledge
referencesThesespecializedindexesare discussedin
detail later.

Table 1: Text entry representation in the
id2entry index. The first line contains the
entry ID. The second line contains the
Distinguished Name. Subsequent lines
contain attributes.

12345

dn: cn=Babs Jensen, o=Babsco, c=US
cn: Babs Jensen

cn: Barbara J Jensen

sn: Jensen

Given this index structure, answeringa simple
query is straightforward: look up thequestedralue in
the appropriate attribute index, returninisa of entry
IDs; look up thoseentry IDs in the id2entry index,
returning the resultingntriesto the user.For reasons
discussedelow, the entriesread from the index files
may becandidate entries,that is, thereis no guarantee
that they actualy match the quemhereforeeachentry
has the filterappliedto it directly beforeit is returned
as a match. This also provides an opportutotapply
access control, size and time limits, etc.

Using this simple index structure,we are able to
answervirtually any X.500/LDAP query efficiently.
The requirementson the underlying database are
minimal: index entriesare readandwritten; entry 1Ds
are insertedin and deletedfrom index entries. Only
during range queriesand, optionally, some forms of
approximate matching is some orderimg the indexes
required, implying the btree, rather than hash file,
backend.

4 Specific Query Types

This sectiondiscussexldbm’s index use in detail
for various types of queries. For all queries, geaeral
approachis to consult one or more index files to
generate a list of entries. Dependingtba querytype,
these entries may have the filter applied to them
directly to ensure a matchndividual searchprimitives
are describedirst, followed by booleancombinations
of queries.

4.1 Simple Equality

An equality searchtests for entries that have a
given value for a certain attribute. For example,a
commonNameof “Babs Jensen.”Satisfying such a
query using the xldbm index structure is

straightforwardthe commonNamendex is consulted
for the list of entriesorrespondingo the value “Babs
Jensen.”Next, this list of entriesis read from the
id2entry index. The entriesreturnedare guaranteedo
match the filter.

4.2 Approximate Matching

There are several approachesto approximate
matching. Phoneticalgorithms such as soundexand
metaphone [] are popular, and there is ongo@sgarch
into spelling or other error-correctingalgorithmssuch
asthe one usedby glimpse([]. Currently,we support
both soundex and metaphone,and have plans to
support glimpse. For both phonetic algorithms we
chosean approachthat makesfew assumptionsabout
the structure of the data (e.g., it dogd assumename
dataand attemptto extract a surnamefor matching
purposes). This makesur algorithm appropriatefor a
wide variety of data, and reduces the risk and
complexity involved in assuming semanticstructure.
The disadvantageis that we are unable to take
advantageof any knowledgeaboutthe type of datato
improve performance.

We treatthe value being matchedas a sequenc®f
words. When building the index, a phoneticcode is
generated for eaclord in the value. The codeis then
storedin the index, mappingto the ID of the entry
containingthe original value. The value given in an
approximatematchingquery is similarly brokeninto
words andthen codes,eachof which is looked up in
the index.

An entry is considered to match the query if it has
value containingwords correspondingdo all the given
codes in the proper order. If the query contains multiple
words, the lists of associatedDs are intersectedto
producethe final list. The words must appearin the
same order inthe value. Since orderinginformationis
lost in the indexthe filter must be applieddirectly to
eachcandidateentry to determineif it really matches
the query. Table 2 showssome example approximate
matching queries and values to match against
(including the correspondingohonetic codesgenerated
by the metaphonealgorithm), anda brief explanation
of why the value does or does not match the query.

Table 2: Example approximate matches

Query(codes) Value(codes) Match?

Babs Jensen Babs Johnson Yes - match
(BBS JNSN) (BBS JNSN)

Babs Jensen Jensen Babs No - match, but
(BBS JNSN) (JNSN BBS) wrong order
Jensen Smith No - codes do
(JNSN) (SMO) not match

Bob Smith Bob A Smith Yes - match
(BB SMO) (BB A SMO)

Bob A Smith Bob Smith No - codefor A
(BB A SMO) (BB SMO) is missing

There are severaloptions for code generationand
matchingin the index. The simplestis to generate
fixed-length codesof some maximum length. This

makes generation and lookup simple. If the code length

is too short, it can leatb unexpectednatchesbecause
of code truncation (e.g., “Babs” matching
“Babsikowjskvik” - both producea codewith BBS as

the first three characters)lf the code length is too

long, it canleadto missed matchesthat should be

returned(e.g., “Howe” not matching“Howes"). These
two problems are in conflict.

The solution is to adopt a configurable “prefix”

matching scheme in which a code is considered a match

if it contains the keycodeas a prefix. This solvesthe
missed match probolem, but can still lead to
unexpected matches as described above. To cdiribat
problem, we add the constraint that the two codast
differ in length by at most N characterghereN is an
administrator-definedconstant. Setting N to zero
resultsin strict code matching. Setting N to a large
numberresultsin strict prefix matching(e.g., “Babs”
(BBS) will match “Babsik” (BBSK) and
“Babsikowjskvik” (BBSKJSKFK)). Setting N
somewherein between results in more reasonable
behavior (e.g., “Babs” matches“Babsik”, but not
“Babsikowjskvik”). We havefound two to be a pretty
good number for N.

To supportthis variable prefix matching requires
the underlying databasedo support prefix retrieval of
codes.With a btree or other orderedmethod, this is
straightforward With a hash-basedchemeijt is more
difficult. For small values of N and a restricted
phoneticcodealphabet(e.g., in the soundexscheme),
it is feasibleto generateall possiblecodesof greater
length (up to N) and look them up. This method
clearly doesnot scalewell, and our implementation
only implementsvariable prefix matching with an
ordered underlying database.

4.3 Substring Matching

The substring matching problem is one of the most

4

interesting and challenging posed by X.500/LDAP.

Both modelssupportarbitrary substring matching on

text attributes. A query may specify a leading

substring, trailing substring, arbitrary internal

substring, or any combinatioof theseto be matched.
We setout to designa schemethat wasfast, efficient

and flexible.A glimpselike approachthough efficient

in terms of indexspaceused,was not fast enoughand

difficult to updateincrementally(e.g., in responseto

modifications). Other approaches involving faattern
matchingon valuessuffer from order N performance
where N is the size of the data being searched.

Our solution is to generate all substring
components of &ixed length for eachvalue andindex
those. Additional anchorsare addedto each value,
marking the beginning anehdof the string. Whena
query is presentedsimilar substringcomponentsare
generateccorrespondingo it. Thesecomponentsare
looked upin the index andthe resultinglists of entry
IDs are intersected to form thist of candidateentries.
Thesecandidateshen havethe query appliedto them
directly, to ensure they match theery.This last step
is necessansince, as for approximatematching, the
ordering of substringsis not retainedin the index.
Figure 3 illustrates this process for the value “Babs.”

Babs —» BABS —» "BABS$
"BA .
BAR Substring
S '
ABS A:tr:jbute
BS$ naex

Figure 3: Substring index generation for
components of length three. The value is
normalized and leading and trailing anchors
are added. Then all possible substrings of
length three are generated and stored in the
corresponding attribute index.

Our experienceshowsthat a componentlength of
three is optimal for databasesof around 100,000
entries. The optimaength dependon the size of the
databeingindexed,the type of data,and a time-space
trade-off in query performance versus index size.
Longercomponentgesultin eachsubstringmapping
to fewer entries, but the number of distinct
components increaseShortercomponentgeducethis
number,but increaseshe numberof entriesto which
each component map$he two extremecasesprovide
some insight:A componentength of one means that
eachletteris a component.For many types of data,
this meansthat closeto everyentry will be listed for
eachcomponentmaking the list of candidateentries
long. A very long componentiength degenerateinto
the equality index case,and no advantageis gained.

Note also that the componentlength sets a lower
boundon the length of substringqueriesthat can be
supportede.g., with a componentlength of three, a
guery for *A* cannot be answered).

In practice,this schemeworks surprisingly well.
For most data sets and query types, we have fthand
tend to contain some “power componerttst help to
reduce the list of candidates quickBathologicalcases
exist in which most entries are listed for each
componentln suchcaseshe “power” aspectmay be
containedin the componentordering, rather than the
componentghemselvesin which casethe algorithm
reducesto a substringsearchof the entire space,as
candidates are eliminated. We hdwand suchcasego
be rare in practice.

4.4 Ranges

For attributessupportingsome kind of ordering,
the X.500/LDAP models support inequalifyeriesfor
entries containing values greater-than-or-equal-tar
less-than-or-equal-to a given valudthough often the
case in practice, there Ii® requirementhat these two
operatorsbe usedtogetherto form a boundedrange
guery.With an underlyingdatabasesupportingordered
retrieval, respondingto such queriesis easy.With a
hash-based scheme pitesentsa problemwe havenot
yet solved, except in some specific cases.

With ordered retrieval, a greater-than-or-equal-to
query is answeredby retrieving the given value (or
“smallest” value greaterthan it), and then stepping
through subsequentvalues in the ordering. The
resulting lists of entry IDs are unioned togetherto
form a single list of candidatesThesecandidatesare
guaranteedo matchthe filter, so thereis no needto
apply the filter directly to them. A less-than-or-equal-to
query is handled similarly. The first item in the
ordering is retrieved, followed by subsequentitems
until an item greatethan or equalto the given key is
reachedThe resultingentry IDs are unionedto form
the result. If the queryinvolvesrangeof values(i.e.,
greaterthan one vaueandlessthan another),obvious
optimizations can be made. The efficiency of this
methodis proportionalto the numberof keys in the
range.

With a hash-basedchemeprderedretrieval is not
possible.In some cases,where the ordering can be
approximatedby a substring search, a hash-based
approachcan still provide results. For example, an
attribute containing UTC time values has this
property. A query requesting entries with a tigreater
than or equalto 1994 andlessthanor equalto 1995
produceshe sameresultsas a substring query for a
time with a leading substring of “1994” (plus the
simple caseof a time equal to 1994). This works
because UTC timbasa concretestring representation
that is lexicographicallyincreasing.The situationsin

which this approach works are limited.

4 .5 Boolean Combinations

As with any databas@ne of the most challenging
problemsis the support of arbitrary queries. If the
query set is restrictedand can be predicted ahead of
time, design is simplified. In theaseof X.500/LDAP
(as with the relationainodel),thereis no limit to the
complexity of queries. The method by which these
queries are built is straightforward, though, makiing
task easier.Booleancombinationsof queriesinclude
conjunction (AND), disjunction (OR), and negation
(NOT). If X and Y are queries, sare“X AND Y,” “X
OR Y,” and “NOT X.”

Conjunctivequeriesare easyto handle.A list of
candidatess producedfor eachconjunctionand then
intersected Note that it is not necessanto evaluate
candidates before the intersection.

Disjunctive queries arsimilarly straightforward A
list of candidatess producedfor eachdisjunction and
then unioned.Again, candidatesreednot be evaluated
before the union takes place.

Negation queries are more difficult. A simple
approach is to produce a list of candidates matctiiag
query and then subtract it from the list of all
candidatesUnfortunately,since the original list may
be only a list otandidates not guaranteed tmatchthe
query, blindly applying this approachcanleadto lost
matches.The solution is to apply the query (before
negation) to the list of candidates before performing the
subtraction.This producescorrect results, but can be
expensive.

For example if the query is for entries not
containingan objectClass of person and the database
contains a million entrieynly one of which is not a
person, the methodegeneratesito a linear search.n
this case,it would be more efficient to step through
the values of the objectClass attribute, building
candidatesfrom the ones matching the query. By
building more knowledgeinto the databasde.g., how
many distinct values are in an index), NOT
performance can be improved.

5 Aliases and Knowledge References

Aliases and knowledge referencesprovide similar
challengesto databasedesign. Both features create
situationswherea searchmust be continued“outside”
of the original searchscope,perhapsevenoutsidethe
original serveandlingthe query. Of the two, aliases
are more problematic because they can panytvhere,
there is noconsistencyrequirementandthey are user-
creatable.

A searchthat doesnot havethe searchAliases flag
setin X.500 or the alias flag set to derefAlways or

derefSearching in LDAP is not affectedby aliases.If
one of these flags is set, indicating that aliases
themselvesshould not be searchedbut rather what
they point to, a new phaseis addedto the search
procedure.

The key to handling aliasesis to identify those
aliases that point outside the scagehe searchlf an
alias doesnot “escape”the scopeof the search,the
entry it points to will be searchedautomatically
(becauset is containedwithin the scope,not because
an alias points to it - why it gets searchedis
immaterial,aslong asit does).Oncesuchaliasesare
identified, the searchis continuedwith the entriesto
which they point (either the entitself for a one-level
search, or the entry and all its descendénts subtree
search).Baseobject searchesare easyto handle by
examining the entry directly, and do not require any
special indexing.

To efficiently identify aliasesthat needsearching,
two new indexes are maintained,one for one-level

scopes, one for subtree scopes. For each non-leaf entry,

the one-levelindex containsan entry containing the
entry IDs of alias children of the entry that do not

point to other children (i.e., aliases that escape the one-

level scope). Similarly, the subtree index contains
entry IDsof alias descendentsf the entry that do not
point to other descendents. Duriagearchthe list of
candidateentriesis generatedas before, and then the
appropriate alias-scoprdex is consultedto determine
if there are entriesoutsidethe scopethat should be
searchedFigure 4 illustratesthis procesdfor a sampe
tree.

One-level alias inde Subtree alias index

1—p 3 1—p 3

Figure 4: Alias scope index. A subtree or
one-level search starting at entry 1
consultss the appropriate index and

determines it needs to continue the search
with the entry pointed to by entry 3.

Knowledge referencesare handled via a similar
approach.Indexes are constructedfor one-level and
subtree knowledge references. Given a sescopeand
the entry ID of the baseobject, the list of knowledge
references within that scope can be quickly retrieired.
X.500, theseknowledgereferencesare either usedto
chain the searchor returnedas continuationreferences

to the client. In LDAP, knowledge referencesare
returned as referrals (moo knowledgereferencesand
their relationshipto centroidsin Section6). Figure 5
depicts the structure of the knowledge reference index.

= (2

One-level KR index Subtree KR index
11— 2 1— 2

Figure 5: Knowledge reference scope index.

A search beginning at entry 1 is continued

at the server identified by the knowledge
reference contained in entry 2.

Maintenanceof the alias and knowledgereference
indexes is non-trivial bustraightforward Whena new
alias entry is added to the tree, thee-levelalias entry
for its parentmay needupdating(if the alias doesnot
point to a sibling entry). The subtreealias entry for
eachancestomay also needupdating.For knowledge
references, the same is true.

This approachallows the efficient identification of

alias andknowledgereferencest which a searchmust

be continued.Aliasescanbe particularly troublesome
from a performancestandpoint.If many aliasesescape
the scope of a search,each one must be searched
individually, causing a significant performance penalty.
It's hard to see @eneralsolution to this problemthat
guarantees googerformance,and we feel this is a
design deficiency in the X.500 and LDAP models.

6 Centroids

A weaknesf the X.500/LDAP modelis its lack
of support for wide-area searches.The hierarchical
schemeworks well for searchesvhose scopecan be
restricted using the namespace. For searches that do not
have this property, the model degenerates to a sefirch
the entire tree, contactingevery server.Clearly, this
approach does not scale well.

Several solutions have beenproposed,including
alternate hierarchies; special “yellow pages” portions of
the tree where attributes are organizedto facilitate
alternate searching; “alias” trees that collgointersto
information in other servers; and out-of-band
distributed indexing to help prune the seasplace All
these schemes have thaidvantageshyut we chosethe
latter approachfor our system.It avertsmany of the
maintenance and consistency probemasfg aliases,
and does not require the global cooperation necessary to

implement an alternatenamespacelt also has the
advantageof presentinga consistentmodelto clients;
they see the santece as always, searchegust happen
more efficiently.

We choseto use centroids as our distributed
indexing framework. Adaptedfrom work by Salten(],
andoriginally proposedor useon the Internetin the
WHOIS++ system, centroids have the potential to
provide efficient wide-area searching in the
X.500/LDAP model. We have adapted centrdiolghis
model, andncludeda few extensionghat allow us to
supportthe more flexible query languagedefined by
X.500 and LDAP.

The basiccentroid model involves generatingthe
list of distinct words in a database. Thist is calleda
centroid of the databaself centroidsare generatedor
many suchdatabaseandgiven to anotherserver,the
servercan consult the list of centroidsto determine
which low-level databasemight hold the answerto a
query. An trivial example is shown in Figure 6.

Babs —» AB
Jensen —» AB
Johnso— AB
Bjorn —» A
Laas —™ B

server (

Babs Jenser
Babs Johnsc
Bjorn Jenser

Babs Jenser
Lars Johnsol

server E

server /

Figure 6: Centroid example. A centroid is a
list of distinct words in a database. A server
that collects centroids from other servers is
able to determine which servers are likely to
be able to answer a given query. A search
involving the word “Bjorn” can be directed
only to server A.

We modified the centroid model to include whole
values,rather than words. Simiar modifications were
made bythe desigherof SOLO [], who usecentroids
for navigation andsearchingThe useof valuesin the
centroid enablesa broaderrange of searchesto be
supported (e.g., substrings), and fewer “fgdesitives”
to be returned.There is a trade-off, of course.The
centroidsproducedare larger, not having as attractive
collapsing properties as their word-oriented
counterpartsTable 3 providesa comparisonbetween
the word and value approaches to centroid generation.

Tablle 3: Word versusvalue centroid
comparison. Word-based centroids tend to be

smaller, but value-based centroids allow
more accurate and flexible query resolution.
In this example, the word centroid is
smaller by one “Babs” and one “Jensen,” but
gives a false positive match for a query for
“Bjorn Johnson.”

Values Word centroid Valuecentroid
Babs Jensen Babs Babs Jensen
Babs Johnsor Jensen Babs Johnson
Babs Jensen Johnson Bjorn Jensen
Bjorn Jensen Bjorn

Incorporating centroids into the X.500/LDAP
model is not difficult conceptually. A search is
initiated at somepoint in the hierarchy.Normally, a
server would search itswn dataand chain or refer the
search to all servers holding data below it in the tifee.
a server holds centroids for these serversiitconsult
them and only chain or refer the searchhoseservers
possibly ableto satisfythe query.Figure 7 illustrates
this process.

fix
Figure 7: Search-space pruning using
centroids. A server holding centroid data for
servers below it in the tree only chains or

refers the search to those servers possibly
able to answer the query.

In our database desigwe introducethe conceptof
a centroid entry. Conceptually,the entry holds an
entire centroid,along with accessinformation for the
server that generated the centroid. (In our
implementation,this information is containedinthe
name of the centroid entry.) The values in ¢éméry are
added to théndexesjust like normalvalues.During a
search, the indexes are consulted as usual, retutmeng
ID of the centroidentry. Herethe handlingof centroid
entries differs from regulagntries.Insteadof returning
the entry to the client, the searchis continuedusing
the accessinformation in the centroid entry, or the
accessnformationis returnedto the client so it may
continue the search.

This implementation of centroids has several
advantages. First, it was very easy to impleméntce
we developedthe index structure describedin the
previoussections,it took literally lessthan a dozen
lines of code to support centroiddecondthe pruning
happensthrough the normal indexing consultation
process.Third, the centroid generationand addition
process is done using normal DAP or LDAP
operations. Centroids are addezing the addoperation
and deleted using the delete operation. Existing
centroids are modified using the modify operation (e.g.,
in response tancrementalchangedo the centroid).A
separate process is responsible for using these
operationsto generateand apply centroid changesto
andfrom the databaseThis makesit easyto addnew

schemes later, or change the existing scheme.

7 Modifications

Both X.500 and LDAP support adding, deletiarg
modifying entriesin the directory. They assumethat
read requests of the directamye far more frequentthan
writes, but modify performanceis still an issue. In
both models, every set of modificationsmust either
succeed or fail as a group. Although denot provide
a transactiorsystemwith roll-back capability, we do
minimize the time during which a seriousfailure can
occur.

A modification is implementedas a three-step
process.First, an in-memory copy of the entry is
changedlf this fails, or the entry fails to satisfy the
directory schemarequirementsafter the modifications
are applied, the operation is aborted. Second, the
affectedindexesare updated.This involves inserting
anddeletingentry IDs from index entries.If anything
goeswrong here,the operationis aborted.Third, the
id2entry index containing the entry itsa updated.n
case of acatastrophidailure, this is the only file that
is crucial. The otheindexescan be reconstructedrom
theid2entry index. So, the only critical sectionof the
modify is theupdateof the id2entry index. Sinceeach
entry is representedn the index by a contiguous
sequence ofharactersthe updateof this index canbe
done with a single write operation, furtheducingthe
risk.

In practice, we find this level of reliability adequate,

especially when combined with the ability to do
replication, which we have implemented. A full

discussionof our replication strategyis beyond the
scopeof this paper,but changesare loggedto a file

which is then readby a separatereplication process,
responsibldor distributed changesto any number of

replicas.

8 Performance Enhancements

As describedthe systemworks surprisingly well,
especiallyconsideringits simplicity. We have made
severalenhancementthat havesignificantly increased

performance, especially on modifies. First, our original

design called for aeparaténdex file for eachattribute
and index type (i.e., for each attribute files for the
equality index, substringindex and approximateindex
are created).To reducethe numberof indexesopen at
one time, we have combined these tHikss into one.
Doing so requiredthe additionof a prefix schemefor
storing the value keys in order to avoid conflicts.
Equality keys are prefixedby “=", substringkeys are
prefixedby “*", andapproximatekeys are prefixed by
“~"_ This reducedy a factor of three the number of
open indexes necessary, with little impact on
performance.

Second, oupriginal designcalledfor index entries
as single blocks of entry ID$n practice,theseblocks
become quite large. For exampie,our databasehere
are close to 100,000 peopdatries,causingthe single
objectClass index entry for the value person to be
about 400,000 bytes (100,000 entries* 4 bytes per
entry ID). If an entry is added, this index entry
increaseshy one entry ID, causingthe entire 400K
block to be rewritten. This caused a sevegdormance
penalty. To combatthe problem, we introduced a
schemen which index entriesare brokenup into file
system-sized blockragments.Small blocks are stored
as before. Large blocks are accessedvith a level of
indirectionthrougha “header” block which points to
the fragments. A slight penalty is paihenthe block
is read(severalsmall readstake longer than thanone
large one), but the performance increase arodify is
substantial. Generally, only one fragment needs
updating.

Third, we noticed that some index entries,
particularlyin the substringindex, were so large that
they contributed little to reducing the number of
candidatesWorse, such blocks contribute to poor
performanceboth on readsand writes. To reducethe
effects of such largblocks, we introducedthe concept
of analllDs block. ThealllDs block is a simpe stand-
in for a block containing alkentry IDs in the database.
It containsa single flag-valuedentry ID, making it
very small. ThallIDs block acts like theuniversalset
in index operations.The block size above which a
block is replacedby an alllDs block is configurable.
The optimum size dependson the databasesize and
content.In practice,we havefound a size of between
5,000 and 10,000 entry IDs to work well for our
100K-sizedenvironment.Pathologicalcasesexist in
which this approachleadsto a linear searchof the
database, but we have found these cases to be rare.

Finally, our biggest performance enhancement
comes from extensive use of caching. The most
expensive part of the search operat®nhe readingof
candidates fronthe id2entry index, andthe subsequent
applicationof the filter. We maintain a configurable
in-memory cache of entries, keyed by @Ndby entry
ID. Table 4 shows a comparisonof some typical
searcheswith “cold” and“hot” entry cachesWe also
maintain a cache of open index files, and the
underlyinghashor btree databaséeepsa cacheof its
own.

Table 4: Effect of caching on performance
for various queries.

Cold cache Hot cache

Query
cn=Babs - -
cn=*Babs* - -

cn~=Babs - -

9 Limitations

Our schemeperforms well, but it does have
limitations. First, the schemewill not scaleto more
than afew hundredthousando a million entries.The
algorithms are sound, but the use of simple file
system-basedhash and btree packages incurs a
performance penalty. Replacing these underlying
systemswith a DBMS system would undoubtedly
improve performanceand increase the number of
entries the scheme can handle.

Second, we feel modify performance is still
unacceptablypoor. The limiting factor hereagainis
the underlying databasepackage A file system-based
approachnot optimizedfor modification, nor for our
applicationin particular,simply cannotcompetewith
a commercial DBMS.

Finally, the user-friendyext representatiomsedto
store entries in the id2entry index slows down the
readingof entries.Especiallyin the X.500 case there
is significant time spent converting from the text
format to aninternal representationStoring entriesin
BER-encodedASN.1 (the representatiorused on the
wire) would greatly improve this performance. It would
requiredevelopingnew BER-awareversionsof many
utility routines, including things like strcmp and
friends.

10 Summary

This paper describes the des@mdimplementation
of xidbm, a backend database for X.500 atahd-alone
LDAP. The system uses simple freely-available
databasdechnology and provides good performance,
reliability, and recovery.Xldbm handlesvirtually all
types of X.500/LDAP queries efficiently, including
full substringand approximatematches.Aliases and
knowledgereferencesare handledthrough clever index
construction. Centroideave beeradaptedor useasa
search space-pruning device. Several performance
enhancementhave beenimplemented, making the
system perform surprisingly well.

11 Acknowledgements

This material is basedpon work supportedoy the
National ScienceFoundationunder Grant No. NCR-
9416667.

References

[1] The Directory: Overview of Conceptslodels and
Service. CCITT Recommendation X.500, 1988.

[2] W. Yeong, T. Howes, S. Kille, Lightweight

Directory Access Protocol. Request For
Comments (RFC) 1777, March, 1995.

[3] T. Howes, S. Kille,W. Yeong, C. Robbins, The
String Representationof Standard Attribute
Syntaxes. RFC 1778, March 1995.

Author Information

Tim Howes is a Senior Systems Research
Programmer for the University of Michigan's
Information Technology Division. He received a
B.S.E. in Aerospace Engineering, a M.S.E. in
Computer Engineering from U-M, anddempletinga
Ph.D. in ComputerScience.He is currently project
director and principal investigator for the NSF-
sponsoredVINX project, and in charge of directory
service development and deployment at U-M.i$léhe
primary architectandimplementorof the U-M LDAP
directory package, thBIXIE system,the GDA X.500
DSA, and a major developerof the QUIPU X.500
implementationHe is author or co-authorof several
papers and RFCs, including RFC 1777 &%C 1778
defining the LDAP protocol. He is chair of the IETF
Access, Searching, and Indexing of Directories working
group, and an active member of the ACM and IEEE.

